
Version 1.0 – 6th June 2000 Written by Geoff Macdonald

Memory Map
0000-003f� System variables�

0040-00ff� Unused (except by BASIC)�

0100-01ff� Processor Stack�

0200-03ff� Display�

0400-AFFF� RAM�

BC00-BC01� 1st AY8912 sound chip�

BC02-BC03� 2nd AY8912 sound chip�

BC04� Space Invasion sound�

BFC0-BFCF� 1st 6522 VIA�

BFD0-BFD3� Serial I/O (not implemented in emulator)�

BFE0-BFEF� 2nd 6522 VIA�

BFF0� Read: Chunky graphics on
Write: Reset keyboard interrupt flag�

BFF1� Write: Start delayed NMI�

BFF2� Write: Write hex. keypad column�

BFF3� Read: Read ASCII keyboard last key/hex. keypad row
Write: Chunky graphics off�

C000-E7FF� BASIC interpreter ROM�

F000-F7FF� XBUG ROM�

F800-FFFF� TANBUG ROM�

System Variables
0000� Used by breakpoints�

0001� Last ASCII keyboard character�

0002� Temporary character store�

0003� Display index�

0004-0006� Fast interrupt link�

0007-0009� NMI link�

000A-000B� Cursor index�

000C� Zero if in user program�

000D� nonzero if in single instruction�

000E� Proceed counter�

000F� Hex/ASCII keyboard�

0010-0012� Slow interrupt link�

0013-0014� Used by hexpack rountine�

0015-0016� Psudo PC�

0017� Psudo PSW�

0018� Psudo SP�

0019� Psudo IX�

001A� Psudo IY�

001B� Psude A�

001C-001D� Temporary store�

001E-001F� Copy store�

0020-002F� Breakpoint addresses�

0030-003F� Breakpoint code store�

Display Format

��������	
������
���
���������������������
�
����������
�������
�
���	����

��
������
��
����������������
�
������
�����
����
	������������	��������������
��

�������������������!��
��������
��������"�

0200� 0201� ...� 021E� 021F�

0220� 0221� ...� 023E� 023F�

� � ...� � �

03C0� 03C1� ...� 03DE� 03DF�

03E0� 03E1� ...� 03FE� 03FF�

A single character cell may be either an ASCII character or a "chunky
graphic" character. Reading from address BFF0 causes subsequent
writes to the display to appear as chunky graphics. Writing to BFF3
causes subsequent characters to appear as ASCII characters. It is not
possible to determine whether a particular character is being
displayed as an ASCII character or a chunky character.

Character Sets

ASCII Characters�

00-0F�
�

10-1F�
�

20-2F�
�

30-3F�
�

40-4F�
�

50-5F�
�

60-6F�
�

70-7F�
�

Characters 80-FF are repeats of characters 00-7f

Chunky Graphics�

Chunky graphics characters are made of a 2x4 block. A pixel within
the block is set if the corresponding bit of the character code is a "1".
The pixels are arranged as follows:

0� 1�

2� 3�

4� 5�

6� 7�

00-0F�
�

10-1F�
�

20-2F�
�

30-3F�
�

40-4F�
�

50-5F�
�

60-6F�
�

70-7F�
�

80-8F�
�

90-9F�
�

A0-AF�
�

B0-BF�
�

C0-CF�
�

D0-DF�
�

E0-EF�
�

F0-FF�
�

��

Monitor Subroutines
FDFA� POLLKB

Waits for the user to press a key, then returns. The ASCII
code for the key pressed is stored at address 0001�

FE73� OUTPCR
Outputs a CR to the display�

FE75� OPCHR
Outputs the character in the accumulator to the display�

FF0B� HEXPNT
Outputs the accumulator to the display as a pair of hex
digits�

FF28� HEXPCK
Reads hex characters from the current cursor line and
converts them into two 8-bit binary values stored in
addresses 0013 and 0014. Set IY to the offset of the first
character to convert (0=start of line). Conversion stops
when a non-hex character is found. On exit, Z is clear if the
terminating character was the cursor and V is set if there
were one or more characters converted.�

Monitor Commands�

All commands and data must be typed in upper case. If you type
anything incorrectly, TANBUG will display a "?" at the end of the line.

M - Memory examine/modify�

Displays the content of a specified memory location and allows you to
change it.
Command format:

M<ADDRESS>
Where ADDRESS is the address if the memory to display/change.
The current content is displayed after the address. If you want to
change it, type the new value. Pressing ENTER will store the new value
(if there is one) and exit. Pressing Ctrl-ENTER (this was a single key on
the Microtan keyboard - LF) stores the new value and opens up the
next location. ESC stores the new value and opens up the previous
location.

L - List memory�

Displays the contents of a section of memory.
Command format:

L<ADDRESS>,<NUMBER OF LINES>
Where ADDRESS is the first address to be displayed and NUMBER OF
LINES is the number of eight bytes lines to display.
Each line displayed comprises the address of the first byte on the line
followed by eight bytes of data.

G - Go�

Starts execution of a program.
Command firmst:

G<ADDRESS>
Where ADDRESS is the address of the program start. The program will
execute until either a BRK instruction is executed, or the Microtan is
reset.

R - CPU register display/modify�

Memory locations 0015-001B are used to hold the contents of the CPU
registers. The CPU registers are loaded from these locations when you
execute a program with the G command, and are stored there when
a BRK instruction is executed, prior to the system returning to TANBUG.
The R command simply performs a M0015 command to allow you to
display and modify the CPU registers.

0015� Program Counter (PC) low byte�

0016� Program Counter (PC) high byte�

0017� Processor status word (PSW)�

0018� Stack Pointer (SP)�

0019� Index X (IX)�

001A� Index Y (IY)�

001B� Accumulator (A)�

S - Enable single instruction mode�

When single instruction mode is enabled, your program will execute
one instruction at a time. The CPU registers will be displayed after each
instruction.

N - Normal mode (disable single instruction mode)�

This mode is also automatically set when the CPU is reset.

P - Proceed�

Executes the next instruction. If you follow the P command with a
number, that number of instructions will be executed.

B - Set/clear breakpoint�

Command format:
B<ADDRESS>,<BREAKPOINT NUMBER>

When ADDRESS is the address at which to set the breakpoint.
BREAKPOINT NUMBER is from 0 to 7 and is the ID number of the
breakpoint. To clear a breakpoint, set its address to zero. Used on its
own, the B command will clear all breakpoints.
NOTE: This command works by replacing the instructions at the
breakpoint addresses with BRK instructions when you execute your
program. When your program hits a BRK and returns to TANBUG, all the
breakpoint BRK instructions are replaced by their original values. So:
1. A breakpoint should only be set at the op-code part of your
instruction.
2. If breakpoints are set and the CPU is reset, the breakpoints will be
left as BRK instructions.
3. Setting more than one breakpoint at the same address will cause a
BRK instruction to be left at that address.
4. if your program is self-modifying and it changes an instruction

where a breakpoint has been set, the breakpoint will not occur and
the original value restored if the program exits because of a BRK.

O - Calculate branch offset�

Calculates the offset required for a branch instruction
Command format:

O<BRANCH OPCODE ADDRESS>,<BRANCH DESTINATION ADDRESS>
Where BRANCH OPCODE ADDRESS is the address of the opcode of the
branch instruction and BRANCH DESTINATION ADDRESS is the address
where the branch is to jump to.

C - Copy memory�

Copies a block of memory.
Command format:

C<SOURCE START ADDRESS>,<SOURCE END ADDRESS>,<DESTINATION
START ADDRESS>
Where SOURCE START ADDRESS is the start address of the source block,
SOURCE END ADDRESS is the end address of the source bock (this
address is included in the copy) and DESTINATION START ADDRESS is the
start address of the destination.
Note that this command always copies from the start to the end and,
so if the destination start address is within the source block, the block
will be corrupted.

T - Translate assembler to machine code�

Begin using the single line assembler.
Command format:

T<ADDRESS>
Where ADDRESS is the address at which to begin assembling. The
display will show the address followed by the byte currently stored at
this address and the input cursor (which has changed to an
exclamation mark). You may now enter a line of 6502 assembler,
followed by ENTER.
Each assembler line consists of a three letter mnemonic and, if there is
an operand, a space followed by the operand. All letters must be in
upper case, and hexadecimal values must be preceded by a dollar
"$". You can enter a single character as operand data by preceding
the character with an apostrophe '. Labels cannot be used. The
immediate operator is a "# ".
When you have entered a valid line of assembler, the machine code
will be shown after the address, and the ASCII equivalent on the right.
The address will automatically increment.
If you enter an invalid line, a question mark will be shown and the
address will not change.
Pressing caret "^", will cause the address to decrement by one and
Ctrl-ENTER causes the address to increment by one.
You may change the address by entering *=$<ADDRESS>
Data may be directly entered by typing $<HEX BYTE> or '<CHARACTER>
When you have finished, press ESC.
An example is shown below:

I - Interpret (disassemble) machine code as assembler�

Disassemble a section of memory.
Command format:

I<ADDRESS>
Where ADDRESS is the address at which to begin disassembling.
The display will show fifteen lines of disassembly and stop. You may
new press:

ENTER - display the next fifteen lines
ESC - return to TANBUG
Ctrl-ENTER - display continuous disassembly until the Microtan is reset.

��

BAS - Start BASIC interpreter�

This starts the BASIC interpreter. You can also type GE2ED, which does
the same thing.

